17^2=3*x^2+4*x^2

Simple and best practice solution for 17^2=3*x^2+4*x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17^2=3*x^2+4*x^2 equation:



17^2=3x^2+4x^2
We move all terms to the left:
17^2-(3x^2+4x^2)=0
We add all the numbers together, and all the variables
-(3x^2+4x^2)+289=0
We get rid of parentheses
-3x^2-4x^2+289=0
We add all the numbers together, and all the variables
-7x^2+289=0
a = -7; b = 0; c = +289;
Δ = b2-4ac
Δ = 02-4·(-7)·289
Δ = 8092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8092}=\sqrt{1156*7}=\sqrt{1156}*\sqrt{7}=34\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34\sqrt{7}}{2*-7}=\frac{0-34\sqrt{7}}{-14} =-\frac{34\sqrt{7}}{-14} =-\frac{17\sqrt{7}}{-7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34\sqrt{7}}{2*-7}=\frac{0+34\sqrt{7}}{-14} =\frac{34\sqrt{7}}{-14} =\frac{17\sqrt{7}}{-7} $

See similar equations:

| 0=2+160t-16t^2 | | 3d+4-9d+2=0 | | -11x(x+3)+18=(8-3x)7 | | 10+4m=-8+-7m | | 3/4=a/4a-1 | | 4(3x+9)=-28+16 | | 6x^2-2x+36=5x^2+12x | | 64^2x=16 | | 7/8+w=1/4 | | 3.2=-0.43.2n | | −7b−14=−5b−4b | | x+4/2=10 | | 4)−7b−14=−5b−4b | | 7x+9x-9=4(4x+2) | | 20=10x+-15 | | x-0.07x-409500=75000 | | 2x+25=7x+9 | | -1-8-2u=-5u-6 | | z+18=-50 | | 10=-16t^2+30t+6 | | 31=9w-5 | | t(t+4)-1=t(t=2)+2 | | x-0.07x=75000 | | -1−8−2u=-5u−6 | | 8x-5=15x+1 | | 20x^2-36x-16=0 | | 6y+3=8y-29 | | 1.3(8-6)+3.7g=-5.2g | | 11g=4(9g-5)-18 | | -3-7m=-10-6m | | -3u(u-7)(u-5)=0 | | 6x-3(3x-2)=9 |

Equations solver categories